Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Information systems frontiers : a journal of research and innovation ; : 1-16, 2022.
Article in English | EuropePMC | ID: covidwho-1640114

ABSTRACT

Fake news (FN) on social media (SM) rose to prominence in 2016 during the United States of America presidential election, leading people to question science, true news (TN), and societal norms. FN is increasingly affecting societal values, changing opinions on critical issues and topics as well as redefining facts, truths, and beliefs. To understand the degree to which FN has changed society and the meaning of FN, this study proposes a novel conceptual framework derived from the literature on FN, SM, and societal acceptance theory. The conceptual framework is developed into a meta-framework that analyzes survey data from 356 respondents. This study explored fuzzy set-theoretic comparative analysis;the outcomes of this research suggest that societies are split on differentiating TN from FN. The results also show splits in societal values. Overall, this study provides a new perspective on how FN on SM is disintegrating societies and replacing TN with FN.

2.
BMJ Evid Based Med ; 27(5): 263-273, 2022 10.
Article in English | MEDLINE | ID: covidwho-1583131

ABSTRACT

OBJECTIVES: To determine if and to what degree asthma may predispose to worse COVID-19 outcomes in order to inform treatment and prevention decisions, including shielding and vaccine prioritisation. DESIGN: Systematic review and meta-analysis. SETTING: Electronic databases were searched (October 2020) for clinical studies reporting at least one of the following stratified by asthma status: risk of infection with SARS-CoV-2; hospitalisation, intensive care unit (ICU) admission or mortality with COVID-19. PARTICIPANTS: Adults and children who tested positive for or were suspected to have COVID-19. MAIN OUTCOME MEASURES: Main outcome measures were the following stratified by asthma status: risk of infection with SARS-CoV-2; hospitalisation, ICU admission or mortality with COVID-19. We pooled odds ratios (ORs) and presented these with 95% confidence intervals (CI). Certainty was assessed using GRADE (Grading of Recommendations, Assessment, Development and Evaluations). RESULTS: 30 (n=112 420) studies were included (12 judged high quality, 15 medium, 3 low). Few provided indication of asthma severity. Point estimates indicated reduced risks in people with asthma for all outcomes, but in all cases the evidence was judged to be of very low certainty and 95% CIs all included no difference and the possibility of increased risk (death: OR 0.90, 95% CI 0.72 to 1.13, I2=58%; hospitalisation: OR 0.95, 95% CI 0.71 to 1.26; ICU admission: OR 0.96, 95% CI 0.75 to 1.24). Findings on hospitalisation are also limited by substantial unexplained statistical heterogeneity. Within people with asthma, allergic asthma was associated with less COVID-19 risk and concurrent chronic obstructive pulmonary disease was associated with increased risk. In some studies, corticosteroids were associated with increased risk, but this may reflect increased risk in people with more severe asthma. CONCLUSIONS: Though absence of evidence of a clear association between asthma and worse outcomes from COVID-19 should not be interpreted as evidence of absence, the data reviewed indicate that risks from COVID-19 in people with asthma, as a whole, may be less than originally anticipated.


Subject(s)
Asthma , COVID-19 , Cross Infection , Adult , Asthma/complications , Asthma/epidemiology , Asthma/therapy , Child , Hospitalization , Humans , Intensive Care Units , SARS-CoV-2
3.
Viruses ; 13(5)2021 04 30.
Article in English | MEDLINE | ID: covidwho-1217118

ABSTRACT

No routine laboratory biomarkers perform well enough in diagnosing COVID-19 in isolation for them to be used as a standalone diagnostic test or to help clinicians prioritize patients for treatment. Instead, other diagnostic tests are needed. The aim of this work was to statistically summarise routine laboratory biomarker measurements in COVID-19-positive and -negative patients to inform future work. A systematic literature review and meta-analysis were performed. The search included names of commonly used, routine laboratory tests in the UK NHS, and focused on research papers reporting laboratory results of patients diagnosed with COVID-19. A random effects meta-analysis of the standardized mean difference between COVID-19-positive and -negative groups was conducted for each biomarker. When comparing reported laboratory biomarker results, we identified decreased white blood cell, neutrophil, lymphocyte, eosinophil, and platelet counts; while lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransferase were elevated in COVID-19-positive compared to COVID-19-negative patients. Differences were identified across a number of routine laboratory biomarkers between COVID-19-positive and -negative patients. Further research is required to identify whether routine laboratory biomarkers can be used in the development of a clinical scoring system to aid with triage of patients.


Subject(s)
Biomarkers/analysis , COVID-19/diagnosis , Diagnostic Tests, Routine , Humans , United Kingdom/epidemiology
4.
BMC Med ; 18(1): 346, 2020 11 04.
Article in English | MEDLINE | ID: covidwho-908264

ABSTRACT

BACKGROUND: Tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral ribonucleic acid (RNA) using reverse transcription polymerase chain reaction (RT-PCR) are pivotal to detecting current coronavirus disease (COVID-19) and duration of detectable virus indicating potential for infectivity. METHODS: We conducted an individual participant data (IPD) systematic review of longitudinal studies of RT-PCR test results in symptomatic SARS-CoV-2. We searched PubMed, LitCOVID, medRxiv, and COVID-19 Living Evidence databases. We assessed risk of bias using a QUADAS-2 adaptation. Outcomes were the percentage of positive test results by time and the duration of detectable virus, by anatomical sampling sites. RESULTS: Of 5078 studies screened, we included 32 studies with 1023 SARS-CoV-2 infected participants and 1619 test results, from - 6 to 66 days post-symptom onset and hospitalisation. The highest percentage virus detection was from nasopharyngeal sampling between 0 and 4 days post-symptom onset at 89% (95% confidence interval (CI) 83 to 93) dropping to 54% (95% CI 47 to 61) after 10 to 14 days. On average, duration of detectable virus was longer with lower respiratory tract (LRT) sampling than upper respiratory tract (URT). Duration of faecal and respiratory tract virus detection varied greatly within individual participants. In some participants, virus was still detectable at 46 days post-symptom onset. CONCLUSIONS: RT-PCR misses detection of people with SARS-CoV-2 infection; early sampling minimises false negative diagnoses. Beyond 10 days post-symptom onset, lower RT or faecal testing may be preferred sampling sites. The included studies are open to substantial risk of bias, so the positivity rates are probably overestimated.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/standards , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/genetics , Humans , Longitudinal Studies , Pandemics , Pneumonia, Viral/genetics , SARS-CoV-2
5.
BMJ Evid Based Med ; 2020 Sep 03.
Article in English | MEDLINE | ID: covidwho-744860

ABSTRACT

BACKGROUND: Respiratory illnesses typically present increased risks to people with asthma (PWA). However, data on the risks of COVID-19 to PWA have presented contradictory findings, with implications for asthma management. OBJECTIVE: To assess the risks and management considerations of COVID-19 in people with asthma (PWA). METHOD: We conducted a rapid literature review. We searched PubMed, medRxiv, LitCovid, TRIP, Google and Google Scholar for terms relating to asthma and COVID-19, and for systematic reviews related to specific management questions within our review, in April 2020. References were screened and data were extracted by one reviewer. RESULTS: We extracted data from 139 references. The evidence available is limited, with some sources suggesting an under-representation of PWA in hospitalised cases and others showing an increased risk of worse outcomes in PWA, which may be associated with disease severity. Consensus broadly holds that asthma medications should be continued as usual. Almost all aspects of asthma care will be disrupted during the pandemic due not only to limits in face-to-face care but also to the fact that many of the diagnostic tools used in asthma are considered aerosol-generating procedures. Self-management and remote interventions may be of benefit for asthma care during this time but have not been tested in this context. CONCLUSIONS: Evidence on COVID-19 and asthma is limited and continuing to emerge. More research is needed on the possible associations between asthma and COVID-19 infection and severity, as well as on interventions to support asthma care in light of constraints and disruptions to healthcare systems. We found no evidence regarding health inequalities, and this urgently needs to be addressed in the literature as the burdens of asthma and of COVID-19 are not equally distributed across the population.

SELECTION OF CITATIONS
SEARCH DETAIL